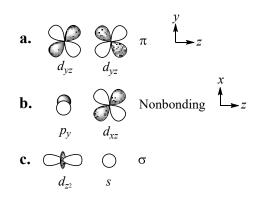
<image>

OXFORD


GARY O. SPESSARD GARY L. MIESSLER

OXED Name

Chapter 2:

- **2-1** a. For n = 3, quantum number *l* can have values of 0, 1, and 2.
 - **b.** One electron in the orbital must have $m_s = \frac{1}{2}$, the other $m_s = -\frac{1}{2}$
 - c. p electrons have quantum number l = 1; m_l can have the values: -1, 0, 1
 - **d.** In a *d* subshell $(l = 2) m_l$ can have the values: -2, -1, 0, 1, 2

2-2

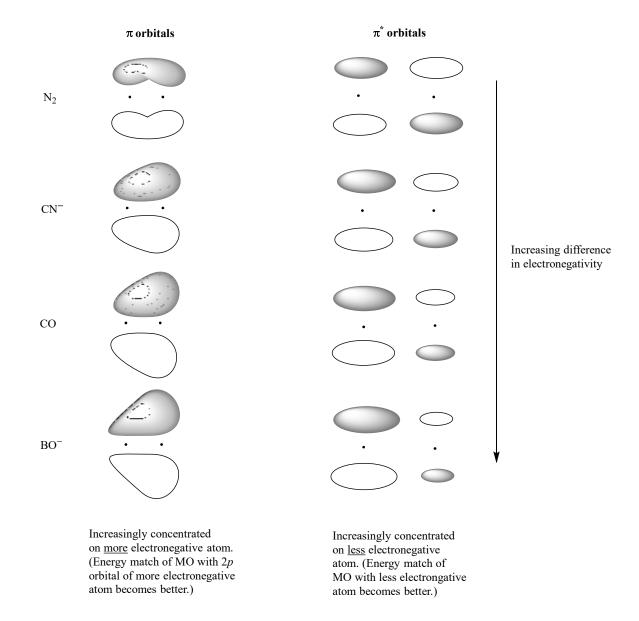
2-3

a.
$$\bigcirc_{s} \qquad \bigotimes_{p_{y}} \qquad \text{Nonbonding}$$

b.
$$\bigcirc_{z} \qquad \bigotimes_{d_{xy}} \qquad \bigvee_{p_{z}} \qquad x \qquad y$$

c.
$$\bigotimes_{p_{y}} \qquad \bigotimes_{p_{y}} \qquad \pi \qquad \bigvee_{z} \qquad y$$

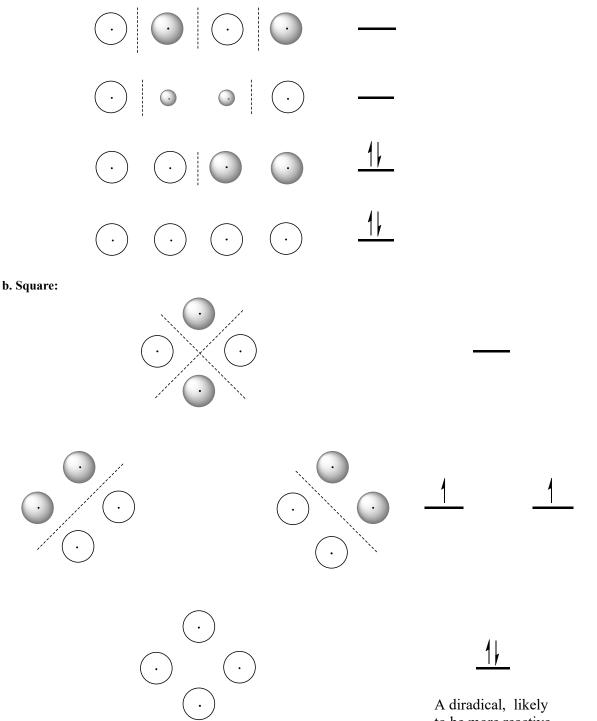
2-4 The molecular orbital diagram of NO is very similar to that of CO (Figure 2-5). In NO there is a single electron in a π_{2p}^* orbital. The bond order = 2(10-5) = 2.5. (Alternatively one can count only valence electrons; in that case bond order = 2(8-3) = 2.5)


Bond orders for the three species:

Bond order

NO^+	3
NO	2.5
NO-	2

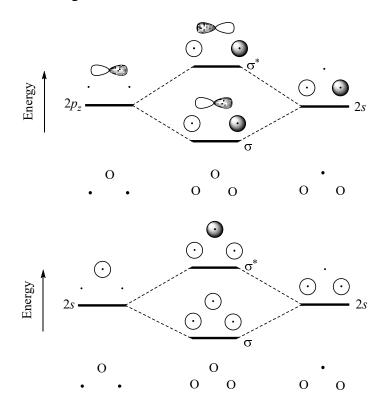
NO⁺, with the highest bond order, has the shortest bond:


	Bond distance (pm)				
NO^+	106				
NO	115				
NO-	127				

2-6 Calculations should give similar results to problem 2-5: as the difference in electronegativity of the atoms increases, the lobes of the π orbitals should become increasingly concentrated on the more electronegative atom, and the lobes of the π^* orbitals should become more concentrated on the less electronegative atom.

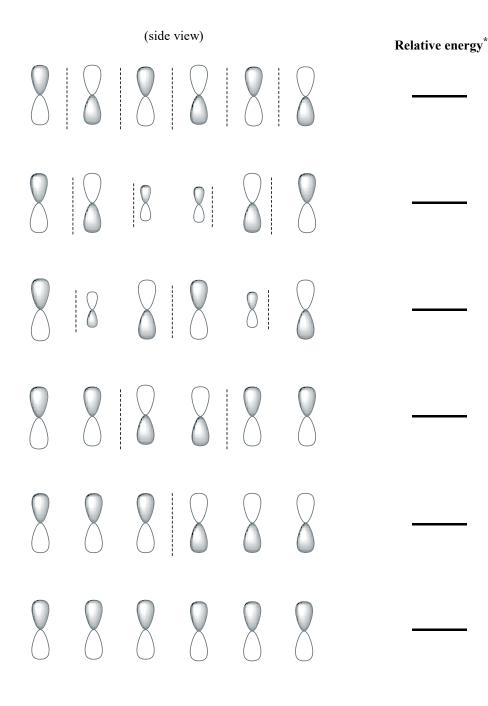
- **2-7 a.** H₂ (bond order = 1; bond order of $H_2^+ = 0.5$)
 - **b.** NO^+ (bond order = 3; bond orders of NO and NO⁻ are 2.5 and 2, respectively)
 - **c.** CO (bond order = 3; bond order of $CO^+ = 2.5$)


a. Linear:


to be more reactive than linear case.

N ₃ ⁻	Central Atom Orbitals Suitable for Interaction		Group Orbitals	Type of Interaction
	\cdot \odot \cdot	S	\odot · \odot	Sigma
	\cdot \sim \cdot	3	\odot · \odot	Sigma
	\cdot \odot \cdot	p_z		Sigma
	• 🕬 •	P_Z		Sigma
	• 8 •	n	8 • 8	Pi
		p_x	8 · 8	No interaction
	\cdot θ \cdot	p_y	$\theta \cdot \theta$	Pi
		ı y	$\mathbf{\hat{o}}$ · $\mathbf{\hat{o}}$	No interaction
	• N •		N • N	

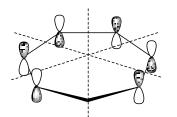
2-10 The MO diagram of O₃ will be similar to that for CO₂ (Figure 2-7). However, the two degenerate π bonding and the two π antibonding MOs will convert to π -type bonding and antibonding MOs (resulting from interaction of the central oxygen atom's $2p_y$ atomic orbital and the group orbital composed of the $2p_y$ atomic orbitals from the outer oxygen atoms) and σ -type bonding and antibonding MOs (involving the combination of the $2p_x$ orbital of oxygen with the group orbital involving the $2p_x$ orbitals from the outer two oxygen atoms). These interactions are shown below:

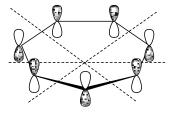


MOs resulting from combination of the 2s and $2p_z$ orbitals from the central oxygen atom and group orbitals comparable to 1 and 2 in Figure 2-7 yield the following MOs:

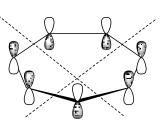
The remaining MOs of O₃ can be generated using the same procedure as above.

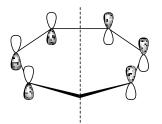
Since O_3 has two more electrons than CO_2 , these extra electrons would likely reside in an MO that is antibonding (perhaps orbital *I* above). By placing two electrons in an antibonding orbital, the bond order of O_3 is decreased by one compared to CO_2 . Thus, one would expect fewer than four bonds distributed among the three oxygen atoms, which is consistent with the Lewis structure of O_3 .




*Not all to scale; all are non-degenerate

Click To Download Full Chapter 1 to 13 Solution manual on Gioumeh


2-12


Relative energy

